IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 8, AUGUST 2013

1689

Robust Log-Energy Estimation and its Dynamic
Change Enhancement for In-car Speech Recognition

Weifeng Li, Longbiao Wang, Yicong Zhou, Herv Bourlard, and Qingmin Liao

Abstract—The log-energy parameter, typically derived from a
full-band spectrum, is a critical feature commonly used in auto-
matic speech recognition (ASR) systems. However, log-energy is
difficult to estimate reliably in the presence of background noise.
In this paper, we theoretically show that background noise affects
the trajectories of not only the “conventional” log-energy, but also
its delta parameters. This results in a poor estimation of the actual
log-energy and its delta parameters, which no longer describe the
speech signal. We thus propose a new method to estimate log-en-
ergy from a sub-band spectrum, followed by dynamic change en-
hancement and mean smoothing. We demonstrate the effectiveness
of the proposed log-energy estimation and its post-processing steps
through speech recognition experiments conducted on the in-car
CENSREC-2 database. The proposed log-energy (together with its
corresponding delta parameters) yields an average improvement
of 32.8% compared with the baseline front-ends. Moreover, it is
also shown that further improvement can be achieved by incor-
porating the new Mel-Frequency Cepstral Coefficients (MFCCs)
obtained by non-linear spectral contrast stretching.

Index Terms—Dynamic change enhancement, in-car speech
recognition, log-energy, mel-filterbank (MFB), mel-frequency
cepstral coefficients (MFCCs).

[. INTRODUCTION

T is generally accepted that the human auditory system is
sensitive to changes in speech inputs over time [2], and a
certain degree of spectral contrast is necessary for robust speech
recognition [3]. Multiple findings from auditory perception ex-
periments also provide evidence that processes of successive
spectral contrast can disambiguate co-articulated speech [4]. In
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[5], it was shown that eliminating the natural time-varying spec-
tral changes over the duration of a vowel resulted in much lower
recognition accuracy for American English vowels.

Under adverse conditions, background noise generally leads
to a reduction in dynamic changes in speech signals. For even
normal hearing listeners, serious reductions in dynamic changes
lead to unreliable segmentation, making the task of parsing the
speech signal more difficult [6]. However, it has been suggested
that under adverse conditions the auditory system makes some
adaptations serving to emphasize newly arriving components
of the signal and enhance the regions of the signal undergoing
spectro-temporal changes [7]. On the other hand, there is strong
evidence that explicitly enhancing the dynamic change helps in
the recognition of a speech signal [8]. In [3], it was shown that
significantly higher scores were obtained with vowels enhanced
to 6 dB of spectral contrast.

For Automatic Speech Recognition (ASR), widely used
front-ends, like Mel-Frequency Cepstral Coefficients (MFCCs)
[9] and Perceptual Linear Prediction (PLP) [10]), are extracted
from short-time spectral energies in a compressed domain.
For example, standard MFCCs are extracted from log scaled
mel-filterbank (MFB) outputs. However, in the presence of
background noise, the dynamic changes in spectral energies
are generally reduced. Fig. 1 (the second row) shows the
first-channel log MFB trajectory (or contour) of speech cap-
tured by a close-talking (headset) microphone and a distant
microphone (attached to the ceiling above the driver’s seat
[1]) in a car-driving environment. Compared to close-talking
speech, the floor level of the log MFB trajectory for distant
speech is elevated and the valleys are buried by noise energy.
While spectral changes in close-talking speech over time
are rather apparent, they become obscure for distant speech
owing to the noise effects. Besides MFCCs, the short-time
log-energy and its temporal derivatives are often adopted as
standard features as well. According to discriminant analysis
of the features used for ASR [11], the frame log-energy and
its temporal derivatives appear to be the most critical features
in terms of recognition accuracy. It has been shown that ASR
performance in clean conditions improves when the short-time
log-energy and its temporal derivatives are used [12]. However,
in low signal-to-noise ratio (SNR) conditions, the trajectory of
the short-time log-energy, which is derived from a full-band
spectrum, can be distorted and fails to describe the speech
signal dynamics, as demonstrated in Fig. 1 (the lower part).
Therefore, in the presence of the background noise, conven-
tional MFCCs and log-energy usually introduce undesirable
mismatches between relatively clean speech (used for training)
and noisy speech (used for testing), resulting in a serious ASR
performance drop. Motivated by the adaptation capabilities of
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Fig. 1. Effects of car noise on log mel-filter bank (MFB) and log energy tra-

jectories. The left subfigures (up to down): waveform, the first log MFB output,
log energy, and the delta log energy of close-talking speech; The right subfig-
ures (up to down): waveform, the first log MFB output, log energy, and the delta
log energy of distant speech; The speech is “12439” in Japanese [1].

the auditory system described above, in [13] we proposed a
new MFCC front-end based on the spectral contrast stretching
of the log MFB outputs.

In this paper, we address the problem of estimating robust
log-energy features in the presence of (car) background noise.
More specifically, we analyze theoretically how the noise af-
fects the trajectories of the conventional log-energy and its delta
parameters, causing them no longer to describe the variations in
the speech, or even to reduce speech performance in low SNR
conditions. We then propose an estimation of the log-energy
from a sub-band spectrum for better representation of the
variations in the speech and enhancing its discriminative power
for speech recognition. Noise reduction and dynamic change
enhancement (DCE) are then applied to suppress the stationary
noise components and boost the non-stationary speech seg-
ments, respectively. Finally a mean filter based smoothing is
performed to eliminate the spike noise and processing artifacts.
Our experiments, conducted on realistic in-car data under
different training and test conditions, demonstrate that, with
the subsequent post-processing, the proposed log-energy and
its temporal derivatives are capable of significantly reducing
the mismatch between the training and test conditions, yielding
much higher ASR performance.

The organization of this paper is as follows: In Section II
we theoretically analyze the resulting mismatch between clean
and noisy conditions in the conventional log-energy estima-
tion. We then propose a new log-energy estimation scheme in
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Section III, where the subsequent post-processing is also de-
scribed. Section IV describes the MFCC front-end proposed in
our previous work [13]. Section V gives a detailed presentation
of our experimental evaluations on realistic in-car data under
different training and test conditions. Finally, in Section VI we
draw our conclusions.

II. LOG-ENERGY ESTIMATION OF MISMATCH BETWEEN
CLEAN AND NOISY CONDITIONS

Let s(¢), n(¢) and z(#), respectively, denote the clean speech,
additive noise, and observed noisy speech signals. The distor-
tion of noisy speech can be expressed as

x(1) = s(i) + n(i). 1))

The energy of noisy speech at the [-th frame is computed by
I I
eoll) = 300 = 5300 +
i=1

i=1
where {2,(¢),i = 1,..., I} are the Hamming windowed noisy
speech signal samples and 1 is the size of the window (likewise
for the clean speech and noise signals). Here we make the as-
sumption of statistical independence between the clean speech
and noise.
The log-energy of the noisy speech x can be formulated as

Zni(i), )

Eo(l) = logeo (1) = log (eu (D) + (D), ()

where
1
es(l) = s24), ©)
and
1
en(l) = Yo (i). (5)

The dynamic changes in log-energy C'g, can be computed as
the difference between the log-energies of noisy speech at frame
[ and the subsequent one (e.g., at frame [ + &, & > 0).

Cr, = E,(1+ k) — E,(1)

= logles(I + k) + en(l + k)]

— logles (1) 4 en(1)]
1 es(l+k)y+e,(Il+Ek)
= log = ©
(el R (D
_1g<1+ Pt ) )

where the approximation is based on the (reasonable) assump-
tion that the noise energy does not vary too much over time (i.e.,
en(l + k) >~ ey (D).

From (7) we can see that when there is noise, the dynamic
change in log-energy decreases, and it becomes even smaller as
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Fig. 2. Histograms of the selected 10 mel-filter banks for different driving con-
ditions. The number of bins used for computing the histogram is 24, the same
as total number of the mel-filter banks. The horizontal axis represents the filter-
bank index and the vertical axis denotes the frequencies for each filter-bank.
Idling: the vehicle is stopped; low-speed: driving on a city street; high-speed:
driving on an expressway.

the noise energy increases. When es(l) = 0 (i.e., non-speech
segments) and e, ([ + k) > 0 (i.e., speech segments), according
to (7) the dynamic change in log-energy from non-speech seg-
ments to speech segments reduces to

log (1 i %) ~log(1+ SNR(I+k)), (8
where
I )
SNRU+R) = 0 ©)

indicates the SNR at frame [ + %. In the case of transition from
speech (at frame /) to non-speech (at frame 7 4 k) segments, (6)
reduces to

(enli+B)
log (65(1) + en(l)

These equations illustrate that the presence of noise reduces
the dynamic changes as a function of the SNR. The effects of the
decrease in dynamic change are clearly demonstrated in Figs.
3-1, 3-5 and 3-7. When the noise is dominant (i.e., €, > e,), (6)
reduces to log( £, (I+k)/E,(1)). In this case, dynamic changes
in the noisy speech signals over time reveal dynamic changes in
the noise rather than those in the speech. Fig. 3-1 illustrates this
phenomenon, especially for the first and last 50 frames.

In summary, in the presence of background noise the conven-
tional static log-energy and its dynamic features (i.e., the delta
and acceleration log-energy features) no longer reflect the varia-
tions in the speech signal very well. If input into an ASR system,
they will produce a mismatch between relatively clean speech

) ~ —log(1+ SNR(1)). (10)
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Fig. 3. The original and proposed log energy, delta log energy, acceleration log
energy trajectories of the close-talking speech and distant speech (The speech is
the same as Fig. 1). Inside each sub-figure, the thin line is for the close-talking
speech and the bold line is for the distant speech. DCE2: dynamic change en-
hancement using (15). MS(M = 5): the five-order mean smoothing.

and noisy speech, which will inevitably degrade the ASR per-
formance.

III. PROPOSED LOG-ENERGY AND SUBSEQUENT
POST-PROCESSING STEPS

A. The Proposed Log-Energy

From Parseval’s theorem [14] we have
I

I
o) = S0 = 1 30 IXu(h)
k=1

i=1

2, (11)

where X, (k) is the discrete Fourier transform of &, (¢), both of
which have a length of I.

Equation (11) implies that the conventional log-energy is de-
rived from the full-band spectrum. To alleviate this problem
and make the log-energy better suited to reflect variations in
the speech over time, we propose estimating log-energy from
a sub-band perspective. More specifically, we estimate it from
the log MFB outputs with the following two considerations: (1)
log MFB outputs are sub-band based, and can capture dynamic
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TABLE 1
TRAINING AND TEST CONFIGURATIONS FOR EACH OF THE FOUR EVALUATION
CONDITIONS. HF: HANDS-FREE MICROPHONE; CT: CLOSE-TALKING
MICROPHONE. IDLING: THE VEHICLE IS STOPPED; LOW-SPEED: DRIVING ON A
CITY STREET; HIGH-SPEED: DRIVING ON AN EXPRESSWAY

conditions Cond.1 Cond.2 Cond.3 Cond.4
train/test train | test | train | test | train | test | train | test
microphone HF HF HF HF CT HF CT HF
idling O 10| O O O
low-speed O O O O O O
highspeed | O | O Ol o010 O
TABLE II

RECOGNITION ACCURACIES (IN PERCENTAGES) FOR DIFFERENT METHODS.
THE UPPER PART PRESENTS THE RECOGNITION PERFORMANCE OF USING
(OR WITHOUT) THE ORIGINAL LOG-ENERGY, USING THE ZERO-ORDER
MFCC, AND USING THE PROPOSED LOG-ENERGY PARAMETER; THE
MIDDLE PART PRESENTS THE RECOGNITION PERFORMANCE OF USING
THE PROPOSED LOG-ENERGY WITH THE SUBSEQUENT DCE; THE
LOWER PART PRESENTS THE RECOGNITION PERFORMANCE OF ADOPTING
MEAN SMOOTHING AFTER “ ProposedE + DCE2 .” AVE.: AVERAGED
RECOGNITION ACCURACIES OVER THE FOUR CONDITIONS

Cond.1 Cond.2 Cond.3 Cond4 Ave.

baseline 81.23 66.85 57.94 43.85 62.46

NE 80.79 68.04 60.47 44.12 63.35
MEFCCO 82.34 66.99 59.53 48.87 64.43
proposedE 83.06 68.12 62.98 50.39 66.16
Eorg+NORM 82.37 70.16 59.34 47.15 64.76
Eorg+MVN 83.05 71.72 62.63 51.71 67.28
proposedE+DCE1 84.79 81.13 7091 56.26 73.27
proposedE+DCE2 84.89 81.38 71.50 57.77 73.88
RASTA 85.04 80.78 71.72 58.48 74.01

M =3 84.61 80.84 71.74 59.20 74.09
M=5 84.26 81.52 71.80 61.46 74.76
M=T 84.30 81.23 72.62 60.33 74.62
M=9 83.66 81.13 70.41 59.00 73.55

variations in the speech signals over time within a particular
sub-band; (2) log MFB outputs with wider change ranges across
time can better reflect dynamic variations in the speech signals
than those with smaller ones. Therefore, we propose calculating
the log-energy by averaging the .J log MFB outputs with the
largest relative changes!. Here the relative? change in their log
MFB values for the j-th filter bank is defined by

Xuk(i) ~ X3 ()
Xx(\r)(])

R(j) = (12)

where X {2 (j) and X ;(w{:)(j ) are the maximum values of the
j-th log MFB outputs along the frames of the utterance and the
estimated noise log MFB value, respectively. X‘(N{’) (j) can be
obtained by averaging the j-th log MFB outputs over the first
several non-speech frames3.

While the conventional log-energy is derived from the
full-band spectrum, the proposed log-energy is sub-band-based.

IThe zero-order MFCC can be viewed as an average of all the A7 log MFB
outputs (M = 24 in our speech recognition experiments), while the proposed
log-energy is the mean value of the J log MFB outputs only with prominent
relative changes. (After exploring different values, we set / = 10 in our
speech recognition experiments.) Considering that noise contaminates some
log MFB outputs more than others, the proposed log-energy is expected to
better reflect the variations in speech than the zero-order MFCC, which is
confirmed in Table II.

2Here, selecting the largest “relative” log MFB outputs is based on the con-
sideration that the log MFB outputs of a particular filter bank may have greater
energy than those of other filter banks.

31n this paper the first 15 frames are used to estimate X&,") (j) and E,, in our
experiments.
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This technique can be viewed as a kind of “missing feature
theory” [15], which rejects unreliable log MFB outputs. In
our case the missing feature masks (or confidence measures)
are based on (12). Fig. 2 shows histograms of the selected ten
MFBs for different driving conditions (idling, low-speed, and
high-speed) when using the distant microphone [1]. It can be
observed that when the car-speed increases, the higher-order
MFBs are more likely to be selected (i.e., more reliable than the
lower order ones). From Fig. 3-2 we can see that compared with
the conventional log-energy the proposed one better reflects
variations in the speech over time, while the mismatch between
the close-talking speech and distant speech is significantly
reduced. Since the proposed log-energy, denoted by F(1), is
still noisy, it is further post-processed by noise subtraction,
dynamic change enhancement (DCE), and mean smoothing, as

described below.
B. Dynamic Change Enhancement

By averaging over the first several non-speech frames, the
noise log-energy can be estimated. The noise-subtracted log-
energy can then be obtained by:

u(l) = {OE(]) = En

where F,, denotes the estimated log-energy of the noise.

By using this noise subtraction technique, the noise is re-
duced, while variations in the speech signal are preserved. Let
F .5 denote the maximum value of the proposed log-energies
along the frames in an utterance. The DCE is implemented by

it E(l) > E,,
otherwise

(13)

E(l) B Emax En 'Ema‘xv (14)
or
o u(l)
E(l)=———-F().
( ) Emax - En ( ) (15)

Through this operation, the range of the dynamic change over
the speech segments is stretched from [0, Fpax — Ey] to
[0, Finax] linearly ((14): DCEI) or non-linearly ((15): DCE2)4,
and the level of spectral variations in the speech is enhanced
accordingly. As shown in Fig. 4, DCE2 emphasizes the speech
variations with larger log MFB values more than those with
smaller values, while DCE1 enhances them uniformly. Fig. 3-3
illustrates the DCE using (15).

C. Mean Smoothing

To reduce the high-frequency components mainly involving
spike noise and the processing artifacts, £(1) is further pro-
cessed by a mean filter, defined as

(M—1)/2
Ey=— >  E(l+p). (17)
p=—(M-1)/2
4If E(1) > E,., (15) can be written as
B = w (16)

Erax — En

and thus & (1) has a quadratic form of the origin E(1).
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=

E max

Fig. 4. The operations of dynamic change enhancement (DCE) DCE1—linear
transformation using (14); DCE2—non-linear transformation using (15).

In summary, our proposed log-energy estimation and subse-
quent post-processing include three components: Section III-A
estimates the log-energy from more reliable sub-bands, but the
noise still remains and the dynamics of speech appear to be not
so prominent, as shown in Fig. 3-2; Section III-B reduces the
remaining noise and enhances the dynamic changes, as shown
in Fig. 3-3; and Section III-C removes the high-frequency com-
ponents consisting of the spike noise and processing artifacts
created by the DCE operations.

Figs. 3-4, 3-6 and 3-8 show the resulting static, delta, and ac-
celeration log-energies, respectively. Compared with the orig-
inal features in Fig. 3-1, 3-5 and 3-7, it is clear that mismatches
between the close-talking speech and distant speech have been
reduced significantly.

Fig. 5 shows the estimated probability density functions
(PDFs) of the resulting static, delta, and acceleration log-en-
ergies using realistic in-car data [1]. As shown in Fig. 5-1, in
car-driving environments the histogram of the conventional
log-energy for close-talking speech is inherently multi-modal,
while the one for distant speech is more Gaussian owing to
the noise effect. The differences between the two PDFs are
significantly reduced by using the proposed log-energy and
post-processing, as shown in Fig. 5-2. The PDFs of the delta
and acceleration log-energy for close-talking speech have more
peaks than those for distant speech (Figs. 5-3 and 5-5), while
the use of the proposed log-energy and post-processing reduces
the mismatches between them, causing them almost to overlap
(Figs. 5-4 and 5-6).

IV. PROPOSED MFCC FRONT-END

In the presence of background noise, the floor level of the log
MFB trajectories of distant speech may be elevated while the
valleys are buried by the noise energy, as shown in Fig. 1. In this
case, compared with clean speech the dynamic changes in the
log MFB outputs are reduced. If the derived MFCC front-ends
are input into an ASR system, they will produce a mismatch
between relatively clean speech (for training) and noisy speech
(for testing). In [13], we proposed a new MFCC front-end by

5The mathematical analysis is similar to that in Section II.
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Fig. 5. Estimated probability density functions (PDFs) of the original and pro-
posed (with subsequent post-processings) log energy, delta log energy, accel-
eration log energy. Inside each sub-figure, the thin line is for the close-talking
speech and the bold line is for the distant speech. DCE2: dynamic change en-
hancement using (15). MS: mean smoothing with the order A = 5.

enhancing the dynamic changes in the log MFB outputs with a
subsequent two-dimensional smoothing, similar to the process
discussed in Sections III-B and III-C.

Let X()(4,1) denote the log MFB output at the j-th filter
bank channel and the [-th frame. Let X,%La)x(]) and X&P)(,j)
denote the maximum value in the utterance and the estimated
one for noise, respectively. We enhance the dynamic changes in
XE(5,1) via

U(XD0 - X 0)

XWB(j,1) = XD, (18)
% ISP ). J:t)s
Xa(i) = X3 ()
where U(+) is the step function:
v, ife>0,
Ulv) = { 0, otherwise. (19)

Then, a two-dimensional mean filter is applied to remove
the undesirable high-frequency components and processing ar-
tifacts, i.e.,

o 1 .
KOG =5 2 XP(mn), 0

: (m.n)ER

where R denotes the M x N window and X ) (m, n) denotes
the neighbors around (7,1).

In our experiments a 3 x 3-windowed two-dimensional mean
filter, with weights of the form

1 1 1 1
w(k, 1) = 9 1 1 1 21
1 1 1
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Fig. 6. The proposed log MFB spectrogram. The speech is the same as that in
Fig. 1. The horizontal axis represents the frame number and the vertical axis
denotes the log MFB index.

was adopted. R
The proposed MFCCs are finally calculated from X () (5, 1)
using the discrete cosine transform (DCT)

Y(il)= \/gé X4, cos (%i(j - 0.5)) (22)

where ¢ and J denote the MFCC index and the total number of
filter bank channels, respectively.

Fig. 6 shows an example of the proposed log MFB spectro-
grams composed of X )(34,1) in (20) (The speech is the same as
that in Fig. 1). It is observed that the enhancement of changes
in log MFB outputs is effective in reducing the mismatch be-
tween close-talking and distant speech. The first three derived
MFCC trajectories for the original and compensated versions
are plotted in Fig. 7. As shown in this figure, the original ver-
sions yield remarkable mismatches between the close-talking
and distant speech in the first and third MFCC trajectories. By
using the proposed MFCCs, however, the mismatches are re-
duced and the speech variations become more pronounced. As
for the second MFCC trajectories, which almost match, the pro-
posed method retains the matched property. Note that the dy-
namic ranges of the compensated MFCC trajectories become
larger owing to the enhancement of dynamic changes in the log
MFB domain.
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Fig. 7. The first three MFCC trajectories of the close-talking speech and distant
speech without and with compensation (The speech is the same as that in Fig. 1).
The left three sub-figures depict the original versions of standard MFCCs, and
the right sub-figures correspond to the ones using the proposed MFCCs. Inside
each small figure, the bold line is for clean speech and the thin line is for distant
speech.

V. SPEECH RECOGNITION EXPERIMENTS

A. Experimental Setup

The proposed algorithms were evaluated on the in-car CEN-
SREC-2 speech database [1]. This database comprises a task for
continuous digit recognition in real car driving environments.
In-car speech data was collected in a specially equipped ve-
hicle under 11 environmental conditions created from combi-
nations of three vehicle speeds (idling, low-speed driving on
a city street, and high-speed driving on an expressway) and
four different in-car environments (normal, with air-conditioner
(fan) on, with audio CD player on, and with windows open).
The speech data recorded with the close-talking (CT) micro-
phone and hands-free (HF) microphone attached to the ceiling
above the driver’s seat were used for this corpus, while speech
recorded with a HF microphone was used for evaluation. There
were four evaluation environments (conditions), as shown in
Table I, and the speech recognition performance depended on
whether the recording environments and the microphones used
for the training and testing data matched.

The speech signals were sampled at 16 kHz. In the baseline
system, spectral components lower than 250 Hz were filtered
out to compensate for the spectrum of engine noise, which is
concentrated in the lower frequency region. The duration of
the analysis window was 20 ms with a frame shift of 10 ms.
A 24-channel MFB analysis was applied, and the logarithmic
outputs of filter banks were computed. The estimated log MFB
outputs were transformed into 12 MFCCs, from which the
MFCC delta and acceleration coefficients were extracted. Fi-
nally, a vector of 39 parameters was used in the hidden Markov
models (HMMs). The speech recognition was carried out using
the whole-word HMMs.

The vocabulary of CENSREC-2 consists of 11 digit models,
where each digit HMM has 18 states with 16 output distribu-
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tions. The acoustic models were properly tuned to balance the
number of insertions and deletions. Further details of the corpus
and the baseline speech recognition system can be found in [1].

B. Speech Recognition Results

The speech recognition results using different methods are
summarized in Table II. The experiments can be divided into
three groups. The upper part of Table II covers the experiments
using the original or proposed log-energy parameter:

+ baseline: the original MFCC and log-energy features,
and their delta and delta-delta (acceleration) parameters
(MFCCs + E+ A 4+ AA);

* NE: the original MFCC features without the log-energies
((MFCCs + A 4+ AA);

*+ MFCCO: the original MFCC features + the zero-order
MFCC, and their delta and delta-delta parameters;

+ proposedE (39 dimensions): the original MFCC features +
the proposed log-energy given in Section III-A, and their
delta and delta-delta parameters.

The middle part consists of the experiments using the pro-

posed log-energy with the subsequent DCE:

+ proposedE + DCE1: using (14) for the DCE (linear);

+ proposedE + DCE2: using (15) for the DCE (non-linear).

For comparison we also performed the experiments applying
the energy normalization® and MVN to the original log-energy
parameter only (denoted by “Eorg+NORM?” and “Eorg+MVN,”
respectively).

Mean smoothing (filtering) is performed after the DCE.
The mean filter used in (17) is essentially a low-pass filter,
smoothing out any spikes in the time series. Although for clean
speech such spikes may contain important information about
the speech variations, for noisy speech these spikes are more
likely to be caused by noise (e.g., the first and last spikes in
Fig. 3—3). Therefore, there is an inherent trade-off in choosing
the order M of the filter in (17). A small M will retain the
short-term cepstral information but it is vulnerable to noise,
while a large M will ensure that the processed features are
less corrupted by noise, but the short-term speech information
will be lost. The frequency responses of M = 3,5 are plotted
in Fig. 8. The lower part of Table II presents the recognition
performance using different mean filter orders. The RASTA
filtering [16] was performed for comparison as well.

Table II shows the recognition results obtained for the dif-
ferent methods. From this table, the following observations can
be made:

+ The “baseline” recognition accuracies depend on the eval-
uation environments. If the recording environments and
the microphones used for the training and testing data do
not match, the recognition accuracy can degrade to 43.85%
(Condition 4).

* Ifthe original log-energy and its A and A/ are not used,
the performance increases for the last three unmatched
conditions. This illustrates that when the training and

This normalization is implemented by subtracting the maximum log-energy
level in dB of the utterance from the energy dB level of the frame and then
limiting the dynamic range of the result to 3040 dB.
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testing conditions are not matched, the conventional
log-energy and its A and AA become harmful, and
should be discarded.

* The use of the zero-order MFCC instead of the original
log-energy helps in speech recognition, but its performance
is worse than using the proposed log-energy. This can be
explained by the fact that some log MFB outputs are so
badly contaminated by noise that they cannot reflect vari-
ations in the speech. This demonstrates the advantages of
the proposed log-energy, in which such seriously-contam-
inated log MFB outputs are discarded.

* Compared with the normalization of log-energy, applying
the MVN to the original log-energy parameter only is ef-
fective in improving recognition performance. Compared
with using the proposed log-energy only, the subsequent
DCE:s further improve recognition accuracy, especially for
the last three unmatched conditions. DCE2 performs better
than DCEI1, which is reasonable when considering that
the non-linear transformation highlights more prominent
speech variations, as shown in Fig. 4. It is noticeable that
the proposed log-energy and subsequent DCEs perform
even better than MVN except for the last condition, which
clearly demonstrates the effectiveness of our proposed al-
gorithms.

* From the lower part of Table II, it is observed that M = 5
yields the best results and achieves an average relative im-
provement of 32.8% compared with the baseline front-
ends. This filter order apparently strikes a good balance
between the speech information preservation and noise ro-
bustness.

C. Incorporating the Proposed MFCCs

We investigated the recognition performance of incorporating
the proposed MFCCs by comparing with some conventional
methods. Their results are shown in Table III. The upper part
consists of the experimental results using the features obtained
from various conventional methods?:
» SS:the MFCCs and log-energy extracted from the spectral
subtraction [19];

* LSA: the MFCCs and log-energy extracted from the
speech enhanced by using the minimum mean square error
on the log-spectral amplitude [20];

* AFE: the ETSI advanced front-end [21];

* MVN: the cepstral post-processing methods based on the
mean and variance normalization (MVN) [22], [23];

* Gau: the cepstral post-processing methods based on the
feature space Gaussianization [24];

* LSA + Gau: the first speech enhancement based on the
LSA, and then the cepstral-domain Gaussianization.

It can be observed that the speech enhancement method, the
LSA , which was proven to be better than the spectral subtrac-
tion, is effective under all four evaluation conditions for noise

"Note that the conventional methods used for comparison are mainly based
on speech enhancement, robust feature extraction/normalization, and combina-
tions of these. There are model-based methods as well, such as [17], [18], which
perform better than the conventional methods.
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Fig. 8. Amplitude-frequency response of the mean filter with A/ = 3 and
M =3

TABLE III
RECOGNITION ACCURACIES (IN PERCENTAGES) OF USING NEW MFCCs
IN SECTION IV. THE UPPER PART PRESENTS THE RECOGNITION
PERFORMANCE OF USING THE FEATURES OBTAINED FROM VARIOUS
CONVENTIONAL METHODS. THE LOWER PART PRESENTS THE RECOGNITION
PERFORMANCE OF ADOPTING THE PROPOSED MFCCS. AVE.: AVERAGED
RECOGNITION ACCURACIES OVER THE FOUR CONDITIONS.

Cond. Cond.2 Cond.3 Cond4 | Ave.

SS 84.05 81.80 63.09 57.73 71.67

LSA 81.71 80.08 67.77 60.24 | 72.45

AFE 84.80 70.42 62.23 56.30 | 68.44

MVN 83.95 80.87 70.54 64.11 74.86

Gau 84.10 79.93 72.24 65.83 75.52

LSA+Gau 84.04 80.71 74.33 68.16 76.81

NewC+Eorg 84.16 83.80 76.85 72.51 79.33

NewC+proposedE 85.04 84.12 77.16 72.71 79.76

NewC+proposedE2 85.66 84.30 82.34 78.82 82.78
NewC+proposedE2

+MVN 85.74 84.48 83.26 81.21 83.67

reduction. The ETSI advanced front-end (AFE) is not effec-
tive except for Condition 1 where both the recording environ-
ments and the microphones are matched. Using the normaliza-
tion methods in the cepstral domain is helpful for improving
the in-car speech recognition performance, although the MVN
does not perform as well as the Gaussianization. Speech en-
hancement followed by a Gaussianization processing performs
the best, especially for the last two unmatched conditions.

The lower part of Table III corresponds to the speech recog-
nition experiments incorporating the new MFCC front-end dis-
cussed in Section IV, denoted by “NewC” in Table III.

* NewC+ Eorg: the new MFCCs and the original log-energy
features, together with their delta and delta-delta (acceler-
ation) parameters;

* NewC + proprosedE: the new MFCCs + log-energy as
proposed in Section III-A, and their delta and delta-delta
parameters;

* NewC + proprosedE2: the new MFCCs + the proposed
log-energy with a subsequent post-processing consisting of
a non-linear DCE and a mean smoothing with M = 5, and
their delta and delta-delta parameters;

* NewC + proprosedE2 + MVN: MVN is appended to
“NewC+ProprosedE2.”
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From the lower part of Table III, we can see that employing
the proposed MFCCs significantly improves recognition per-
formance, which demonstrates their effectiveness in reducing
the mismatch between clean and noisy speech as shown in
Figs. 6 and 7. “NewC+ProprosedE” again performs better
than adopting the original log-energy “NewC+Eorg,” although
the improvement is not as significant as shown in Table II.
This could be explained by the hypothesis that the role of
the three-dimensional “’proposedE” in improving recognition
performance is overshadowed by that of the 36-dimensional
”NewC.” Adding the proposed post-processing to our log-en-
ergy features yields further improvements and achieves an
average improvement of 54.1% compared with the base-
line front-ends. A subsequent MVN in the cepstral domain
yields further ASR improvements, especially for the last two
conditions.

D. Discussion

In this paper we focused on the in-car hand-free speech recog-
nition. The noise in the realistic in-car data used in the above
evaluations was mainly stationary. To investigate the effect of
the proposed methods on other types of noise, we performed the
experiments on Aurora 2.0 [25]. In the Aurora 2.0 database, two
training sets and three test sets are defined. The multi-train set
consists of both clean and noisy speech, while the clean-train set
consists of clean speech only. Test set A is composed of speech
with the same types of additive noise as those in the multi-train
set. Test set B is composed of speech with the non-matched ad-
ditive noise, while Test set C is composed of speech with the par-
tially matched additive noise and non-matched convolutional
noise. The “baseline” feature vector is composed of 39 parame-
ters (12 MFCCs, and their delta and acceleration coefficients as
well as the log-energy and its delta and acceleration).

Table IV gives the recognition performance of different
methods on the multi-train set. The upper part contains the data
for the conventional methods listed in Table II. The lower part
corresponds to our proposed methods.

» proposedE: the proposed log-energy with its subsequent
post-processing (including both DCE and mean smoothing
described in Section III);

* NewC+proprosedE: the proposed MFCCs in Section IV
and the proposed log-energy with its subsequent post-pro-
cessing.

The recognition performance for each noise type was averaged
over all SNR levels (including clean, 20 dB, 15 dB, 10 dB, 5 dB,
0 dB, and —5 dB). It can be seen from Table IV that on the
average employing the speech enhancement method (“LSA”)
and advanced front-end (“AFE”) is helpful for improving the
recognition accuracy; however, their benefits are not as signif-
icant as the normalization methods (“MVN” and “Gau”). On
average our methods, “proposedE” and “NewC+proposedE,”
perform better than the speech enhancement method (“LSA”)
and advanced front-end (“AFE”), but not as good as “MVN”
and “Gau.” It is noticeable that, compared with the “baseline,”
our methods, “proposedE” and “NewC+proposedE,” are effec-
tive in dealing with the convolutional noise (in Set C) and sta-
tionary noise (Car noise), but they are not effective for the non-
stationary noise (e.g., Babble, Restaurant, Street). Compared
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TABLE 1V
RECOGNITION ACCURACIES (IN PERCENTAGES) OF DIFFERENT METHODS ON THE MULTI-TRAIN SET OF AURORA 2.0 [25]. THE RECOGNITION PERFORMANCE FOR
EACH NOISE TYPE IS AVERAGED OVER ALL SNR LEVELS. AVE.: AVERAGED RECOGNITION ACCURACIES OVER THE 10 NOISE TYPES.

Set A Set B Set C Ave.
Subway  Babble Car Exhibition | Restaurant Street  Airport  Station | Subway  Street
baseline 81.06 80.43  78.12 79.50 77.45 79.71 80.14 76.97 75.53 77.69 | 78.66
LSA 80.94 72.67 82.54 82.18 80.94 72.67 82.54 82.18 80.94 72.67 | 79.03
AFE 81.23 80.78  78.80 80.43 78.74 80.19 80.86 77.80 76.23 77.77 | 79.28
MVN 85.56 80.15 84.39 83.87 78.69 83.51 83.31 81.89 84.68 82.80 | 82.88
Gau 84.96 7896  84.40 83.00 76.95 83.37 82.61 81.47 84.03 82.57 | 82.23
proposedE 80.61 77.61 81.98 83.87 77.02 79.37 81.70 81.55 78.73 78.78 | 80.12
newC + proposedE 78.91 77.84  85.59 82.56 77.11 79.48 83.12 82.82 79.04 79.75 | 80.62

with “proposedE,” “NewC+proposedE” does not show its ad-
vantages for the Subway and Exhibition noise in Set A. How-
ever, for other noise types, the benefits of “NewC” are obtained,
and especially for the stationary Car noise the gain is maxi-
mized. In summary, the proposed log-energy and MFCC front-
ends work well for the convolutional and relatively stationary
noise, but not for the non-stationary noise, which can be ex-
plained by: 1) inaccuracy of estimating noise energies by simply
averaging several frames; and 2) failure of enhancing the dy-
namic changes of the speech signals when the non-stationary
noise is involved.

VI. CONCLUSIONS

The log-energy and its delta parameters are critical features
for good performance of ASR systems. In the presence of back-
ground noise, however, these parameters may introduce serious
distortions, reducing their discriminative potential, or even se-
riously reducing performance, especially for low SNR condi-
tions. In this paper, we theoretically analyzed the impact of
background noise on the trajectories of the conventional log-en-
ergy and its delta parameters. Based on this, we proposed a ro-
bust log-energy parameter estimation algorithm, which signif-
icantly reduces the mismatch between clean speech and noisy
speech. The effectiveness of the proposed log-energy and its
corresponding delta parameters was demonstrated on the CEN-
SREC-2 continuous digit recognition task in real in-car environ-
ments. Although the current implementation is in the log MFB
domain, the proposed schemes can be straightforwardly applied
for J-RASTA [16] or in the root power domain [26].

In this paper we focus on in-car hand-free speech recognition.
The noise in the realistic in-car data used in the above evalu-
ations is mainly stationary. Dealing with non-stationary noise
will definitely be our future direction. It is also noticeable that
the proposed method can be applied only after an utterance ends,
and therefore other future work lies in developing a real-time
version.
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